
   

 

 
 

 
 

 

 

Integration with Ethiris 



Introduction Integration with Ethiris  

Introduction   
 
 

 

 

Copyright © 2020 Kentima AB 
 
Reproduction of the content of this manual, whether in full or in part, is prohibited under the 
Swedish Act on Copyright in Literary and Artistic Works without the consent of the copyright 
holders. This prohibition applies to any form of reproduction by printing, copying, tape 
recording, transfer to electronic media, etc. 
 
Production and layout: Kentima AB 
Version: 11.2 
First edition: March 2020 
Printing: Kentima AB 
Trademarks: Ethiris and WideQuick are registered trademarks. All other marks belong to their 
respective owners. 
 
 
 
 
Kentima AB 
 
Postal address: 
PO Box 174 
SE-245 22  STAFFANSTORP 
 
Street address: 
SE-Kastanjevägen 4 
S-245 44 STAFFANSTORP 
 
Email address: 
info@kentima.com 
 
Internet: 
www.kentima.com 
 
 
 
 



   

 i 

Contents 

1 Introduction 1:1 

1.1 Introduction ................................................................................................................1:1 
1.1.1 Use .............................................................................................................1:1 

1.2 General Description ....................................................................................................1:1 

2 ActiveX 2:1 

2.1 Ethiris ActiveX control .................................................................................................2:1 
2.1.1 Overview ....................................................................................................2:1 
2.1.2 Installation .................................................................................................2:2 
2.1.3 Testing the sample application ..................................................................2:3 
2.1.4 ActiveX control interface ...........................................................................2:7 

3 Remote control of Ethiris Client 3:1 

3.1 Ethiris Client Remote control ......................................................................................3:1 
3.1.1 Overview ....................................................................................................3:1 
3.1.2 Installation .................................................................................................3:1 
3.1.3 Testing the sample application ..................................................................3:2 
3.1.4 Remote control interface ..........................................................................3:9 

4 Modbus OPC Server 4:1 

4.1 Modbus OPC Server ....................................................................................................4:1 
4.1.1 Overview ....................................................................................................4:1 
4.1.2 Installation .................................................................................................4:1 
4.1.3 Configuration .............................................................................................4:1 

5 Listeners 5:1 

5.1 Listeners ......................................................................................................................5:1 
5.1.1 Overview ....................................................................................................5:1 
5.1.2 Listeners general .......................................................................................5:2 

5.2 Types of listeners ........................................................................................................5:3 
5.2.1 TCP-inbound ..............................................................................................5:3 
5.2.2 TCP-outbound ............................................................................................5:4 

6 Explanation of Terms 6:1 

7 Index 7:1 





Integration with Ethiris Introduction   

  

 

1 Introduction 1:1 

1.1 Introduction ................................................................................................................1:1 
1.1.1 Use .............................................................................................................1:1 

1.2 General Description ....................................................................................................1:1 





Integration with Ethiris Introduction 

 Introduction  
 

  

1 Introduction 

1.1 Introduction 

This manual is designed to help users integrate their Ethiris system with other 
kinds of systems.  

There are a total of six different manuals for Ethiris. Besides this one, there are 
also Installing Ethiris, Admin - Configuration for Ethiris, Ethiris Client User´s 
Guide, Getting started with Ethiris and Getting started with Ethiris Mobile. 

This part of the manual suite describes some examples of how to integrate 
Ethiris with other systems. For information about the installation process of an 
Ethiris system, please refer to the Installing Ethiris manual. For information on 
how to get started with your Ethiris system after installation, please refer to the 
Getting Started with Ethiris manual.  

For in-depth information on the various functions in Ethiris, please see the 
Admin - Configuration for Ethiris manual and the Ethiris Client User´s Guide 
manual. 

1.1.1 Use 

The primary purpose of Ethiris is camera surveillance, which is performed in 
two ways. One way is manually to monitor live video from different cameras. 
The other way involves recording video from connected cameras. Recording can 
take place continuously from one or more cameras or in the form of video 
sequences when a recording condition is met. The recorded video can be 
played back afterward using sophisticated timelines and a VCR-like interface. 

1.2 General Description 

Ethiris is a surveillance system that uses network cameras and analog cameras, 
together with video encoders from different suppliers.  

The product is divided into several program parts, where Ethiris Server and 
Ethiris Client are the most important ones. The server part manages all cameras 
and stores video on the hard disk. The client part displays live video and 
recorded video sequences. 

There is also a program called Ethiris Admin, which is used for configuring all 
Ethiris modules in the system. In Ethiris Admin, you configure the Ethiris Servers 
by, e.g., defining which cameras are connected to each Ethiris Server, when 
video shall be recorded, what frame rate and resolution to use, etc. You also 
define the view layout in the various Ethiris Clients in the system using Ethiris 
Admin. 



Introduction Integration with Ethiris  

General Description   
 
 

1:2 

In theory, an unlimited number of cameras could be connected to each Ethiris 
server and be displayed in the desired number of Ethiris clients simultaneously. 
In practice, however, bandwidth and screen resolution set limits for the 
appropriate number of cameras connected.  

There are different license levels for Ethiris which permit different numbers of 
cameras to be connected. To meet the need for a large number of cameras, 
Ethiris is designed with a focus on scalability. Scalability means that it is possible 
to divide your system into several Ethiris servers and thus distribute the load 
over several computers.   

A summary of the different Ethiris programs is below: 

 

 

Ethiris Server 

Ethiris Server is the core of an Ethiris system. It handles all communication with 
the cameras and recording of video on a hard drive. Ethiris Server runs as a 
service under the operating system and is automatically started as soon as the 
computer is started. An Ethiris system can be comprised of one or several 
Ethiris Servers. 

 

 

Ethiris Client 

Ethiris Client is used for viewing live video and recorded video. An Ethiris Client 
can connect to one or several Ethiris Servers for access to cameras. An Ethiris 
system can contain one or several Ethiris Clients. 

 

 

Ethiris Admin 

Ethiris Admin is used for configuring the different parts in an Ethiris system. 
Ethiris Server and Ethiris Client are configured with this common tool. From any 
computer in the system, Ethiris Admin can be run and used for configuring all 
Ethiris components on-site. 

 

 

Ethiris Mobile 

Ethiris Mobile is an app for connecting to your Ethiris systems via your cell. 
With Ethiris Mobile you can watch live video from various cameras in your 
system. You can also see all the alarms.  

 

 

Ethiris Server OPC Server 

Ethiris Server OPC Server is a separate Ethiris component that is used for letting 
other systems gain access to the information in Ethiris Server. Any other system 
with an OPC client can connect to one or several Ethiris Servers and read/write 
to all signals in Ethiris Server. E g starting recording of a camera or control a PTZ 
camera.  

 

 

Ethiris ActiveX 

Ethiris ActiveX is a component used for viewing live video from a camera 
connected to an Ethiris Server. This component can be used in any system that 
can handle standard ActiveX components. 

 

 

Ethiris Viewer 

Ethiris Viewer is a separate program used for viewing exported video from an 
Ethiris system. 

 



Integration with Ethiris Introduction 

 General Description  
 

  

 

Ethiris Signature Validator 

Ethiris Signature Validator is a separate software that is used to validate the 
authenticity of exported video files or jpg images, utilizing an embedded digital 
signature. 



Introduction Integration with Ethiris  

General Description   
 
 

1:4 

 

2 ActiveX 2:1 

2.1 Ethiris ActiveX control .................................................................................................2:1 
2.1.1 Overview ....................................................................................................2:1 
2.1.2 Installation .................................................................................................2:2 
2.1.3 Testing the sample application ..................................................................2:3 
2.1.4 ActiveX control interface ...........................................................................2:7 



Integration with Ethiris ActiveX 

 Ethiris ActiveX control 

 2:1 

2 ActiveX 

2.1 Ethiris ActiveX control 

2.1.1 Overview 

The purpose of the Ethiris ActiveX control is for letting other systems display 
live video from cameras connected to an Ethiris Server. Any system that can 
handle standard ActiveX controls can use the Ethiris ActiveX control. 

The other system can run locally on the same computer as Ethiris Server, or it 
can run on a remote computer. The vital thing to keep in mind is that the Ethiris 
ActiveX control must be installed on the same computer where the system that 
will use the ActiveX control runs. 

To be able to connect to an Ethiris Server via the ActiveX control, the Ethiris 
Server has to have the ActiveX license option. This is automatically included in 
the Premium license level and can be purchased specifically for Extended and 
Advanced license level. It is not at all available for Ethiris Servers running at the 
Basic license level. 

To check whether you have the ActiveX option, start Kentima License Handler, 
select Ethiris – Server in the product list, and click Next. In the License 
Information dialog, there is a row with all Options for this license. 

 
Figure 2.1 Make sure the license includes the ActiveX Client option 

Click Cancel when you are done. 



ActiveX Integration with Ethiris  

Ethiris ActiveX control   
 
 

2:2 

In the Ethiris setup, there is a specific Setup Type called ActiveX Client that can 
be selected when installing only the ActiveX control. If you want to install other 
Ethiris components together with the ActiveX control, you have to choose 
Setup Type Custom and then select the component ActiveX Client along with 
the other desired components. 

There is also a sample in C++ .Net that shows how to use the ActiveX control. 

2.1.2 Installation 

Run Ethiris setup on the computer where you want the ActiveX control. In the 
following description of the sample, we assume you also install the ActiveX 
client sample/C++ .Net and that Visual Studio 2017 is installed on the computer 
if you want to look at the source files. 

The ActiveX control will eventually connect to an Ethiris Server somewhere in 
the network. The Ethiris Server need not be installed on the same computer as 
the ActiveX control is, but it also works perfectly OK locally, with both the 
ActiveX control and Ethiris Server on the same computer. 

 
Figure 2.2 Select the components ActiveX Client Sample/C++ .Net & ActiveX Client. 

The ActiveX Client 32-bit (the actual ActiveX control) is automatically selected 
when the sample is selected. 



Integration with Ethiris ActiveX 

 Ethiris ActiveX control 

 2:3 

2.1.3 Testing the sample application 

 The sample 
application is not 
intended to be 
used directly in a 

real application!  

After installation of the sample, you will find the sample files in a subfolder of 
the Ethiris installation folder. In general, this is  
C:\Program Files (x86)\Kentima AB\Ethiris\Samples\ActiveXClient. 

Note that the sample application only is supposed to demonstrate how to use 
ActiveX Client. It is not intended to be used directly in a real application! 

 
Figure 2.3 The ActiveX sample files in Windows Explorer. 

The source files are in the folder Source. I assume that if you know Visual Studio 
2015, you know how to use the source code files. Besides the source code files, 
there is a compiled version of the sample called EthirisViewerControlTester.exe.  

Let’s try it out! 

Double-click the EthirisViewerControlTester.exe file in Windows Explorer. The 
application starts and looks like in Figure 2.4. 



ActiveX Integration with Ethiris  

Ethiris ActiveX control   
 
 

2:4 

 
Figure 2.4 The ActiveX sample application just started. 

At the top of the form is the ActiveX control, idle at the moment. 

The idea is that we shall enter the name/IP address of an Ethiris Server and the 
name of a camera. Then we can start/stop a live video from the camera, and we 
can send commands to it. 

If you have an Ethiris Server connected in Ethiris Admin, you can have a look 
there to get information about the Ethiris Server name/IP address and names of 
the connected cameras. 

In Figure 2.5, the Ethiris Server panel is opened by double-clicking the Ethiris 
Server node in the tree view. In the panel to the right, the computer name, IP-
address, and port are circled. 



Integration with Ethiris ActiveX 

 Ethiris ActiveX control 

 2:5 

 
Figure 2.5 Ethiris Server configuration in Ethiris Admin. 

Now, double-clicking the Network Cameras node in the tree view opens the 
corresponding panel and displays a list of connected cameras. 

 
Figure 2.6 The Network Cameras list in Ethiris Admin. 

Then we have enough information for trying the ActiveX sample. 

Enter the appropriate name/IP-address of an Ethiris Server and a camera name 
in the section Live video in the sample application. In my case, I enter chaotic as 
Ethiris Server name and Door as camera name.  

Click the Start button to start live video. 

If the Ethiris Server runs on the same computer, you can leave localhost or 
enter 127.0.0.1 as Ethiris Server name since both these are aliases for the local 
computer. 



ActiveX Integration with Ethiris  

Ethiris ActiveX control   
 
 

2:6 

 
Figure 2.7 Live video in the test application. 

Just click the Stop button for stopping the live video. 

In the Commands section, you can start event recording for a camera. Click the 
Record Event button. The defined camera will start an event recording.  

To the right of the Record Event button, is a field that displays the Transaction 
ID for the latest command. In the message field below, information is displayed 
about the latest command, such as Transaction ID, Success status, and 
Command. 

For the moment, there is only one available command, RecordEvent. In the 
future, additional commands may be available, and then it makes more sense 
to have a transaction id identifying every command. 



Integration with Ethiris ActiveX 

 Ethiris ActiveX control 

 2:7 

 
Figure 2.8 The Commands section from the test application. 

 

In the section, Border, you can set a border for the ActiveX control and 
determine the Border Color and Border Width. 

2.1.4 ActiveX control interface 

When using the Ethiris ActiveX control, you use the interface of the control. The 
following is a reference to the various available properties, methods, events, 
and enumerations. These are the Ethiris specific properties, methods, and 
events. There are also a bunch of standard properties, methods, and events for 
an ActiveX control, like Width and Height. 

Properties 

Name Type Description 

BorderColor OLE_COLOR Determines the color of the border (if 
visible). 

BorderWidth Long Determines the width of the border (if 
visible). 

BorderVisible Boolean Determines if the border is visible or not.  

Camera String Name of the preselected Camera in the 
Ethiris Server. 

ErrorDescription String Error text (if in error state). 

LogItems Array Reserved for future use 

Port Long Preselected Port in Ethiris Server to 
connect to. This is almost always 1235. 

Server String Address of the preselected Ethiris Server 
to connect to (IP address or DNS name). 

VideoState eVideoState Current state of video communication 
with Ethiris Server. See Enumerations 
later in this document. 

UTC Boolean Interprets timestamps as UTC time if 
true, otherwise as local time. 

 



ActiveX Integration with Ethiris  

Ethiris ActiveX control   
 
 

2:8 

Methods 

Erase() as Long 

Clear the display area of the control. 

 

RecordEvent([Camera as String], [Server as String], [Port as Long]) as Long 

Starts an event recording for the camera Camera on the Ethiris Server Server.  
The parameters are optional, but if left out, the properties Camera, Server, and 
Port have to be set. The return value is the TransactionID for the command. 

 

RecordedFrame(Timestamp as String, [Margin as long], [Camera as String], 
[Server as String], [Port as Long]) as Long 

Displays a recorded frame near the specified time, within the margin in ms (+/-) 
from the camera Camera on the Ethiris Server Server. The parameters Margin, 
Camera, Server, and Port are optional, but if left out, the properties Camera, 
Server, and Port have to be set. The default value for Margin is 1000 ms. The 
return value is the TransactionID for the command. The parameter Timestamp 
uses the string format ”YYYY-MM-DD hh:mm:ss[.fff]”. 

 

StartLive([Camera as String], [Server as String], [Port as Long])  

Starts to retrieve live video from the camera Camera on the Ethiris Server 
Server.  The parameters are optional, but if left out, the properties Camera, 
Server, and Port have to be set. The result is reported back via the event 
VideoStateChanged. 

 

Stop()  

Stops retrieving live video from the current camera. The result is reported back 
via the event VideoStateChanged. 

 

Events 

CommandComplete(Success as Boolean, TransactionID as Long, Command as 
String, Message as String) 

This event is sent from the ActiveX control when a command sent to it earlier is 
complete. The following parameters are sent in the event: 

Success – true or false. If true, the command was completed successfully. 

TransactionID – Contains the ID of the transaction for the command. This is the 
same ID that was returned from the RecordEvent method described above. 

Command – The internal name of the command. For the moment, only one 
command is available, CameraRecord. 

Message – If everything is ok, this parameter is empty. May contain a message 
from the ActiveX control about the command. 

 

LogValueBoolean (Name as String, Timestamp as String, Value as Boolean) 

LogValueDouble (Name as String, Timestamp as String, Value as Double) 



Integration with Ethiris ActiveX 

 Ethiris ActiveX control 

 2:9 

LogValueInteger (Name as String, Timestamp as String, Value as Long) 

LogValueString (Name as String, Timestamp as String, Value as String) 

These events are reserved for future new functionality and are not used in the 
version. 

 

RecordedFrameDisplayed (Timestamp as String, Width as long, Height as long) 

This event is sent from the ActiveX control when a recorded video frame has 
been displayed. The following parameters are sent in the event: 

Timestamp – Timestamp of the displayed video frame in the format ”YYYY-MM-
DD hh:mm:ss.fff”. 
Width – Width in pixels of the displayed video frame. 
Height – Height in pixels of the displayed video frame. 

VideoStateChanged(NewState as eVideoState) 

This event is sent from the ActiveX control when there is a change in the live 
video state, e.g., when the control starts receiving live video from the camera or 
when the live video stops. The following parameter is sent in the event: 

NewState – There are a total of 7 different states as described below in the 
Enumerations section. The NewState parameter describes the new state of live 
video in the ActiveX control. 

 

 

Enumerations 

eVideoState contains 7 different values from 0 to 6, as described below: 

vsIdle – 0. No video is received, and the ActiveX control is idle. 

vsConnectingLive – 1. Connect operation in progress for live video. 

vsConnectedLive – 2. Connection established for live video. 

vsCreatingSessionLive - 3. Call made to create a session. This has to do with the 
internal Ethiris protocol. 

vsRequestedLive – 4. Sent request for live video from the specified camera. 

vsReceivingLive – 5. Receiving live video. This is the normal state when live 
video is sent to the ActiveX control. 

vsError – 6. Something is wrong. 

vsConnectingRecordedFrame – 7. Connect operation in progress for the 
recorded video frame. 

vsConnectedRecordedFrame – 8. Connection established for the recorded video 
frame. 

vsCreatingSessionRecordedFrame – 9. Call made to create a session for the 
recorded video frame. This has to do with the internal Ethiris protocol. 

vsRequestedRecordedFrame – 10. Sent request for recorded video frame from 
the specified camera. 

vsReceivingRecordedFrame – 11. Receiving a recorded video frame. 

 

 





Integration with Ethiris Remote control of Ethiris Client 

  
 

  

 

3 Remote control of Ethiris Client 3:1 

3.1 Ethiris Client Remote control ......................................................................................3:1 
3.1.1 Overview ....................................................................................................3:1 
3.1.2 Installation .................................................................................................3:1 
3.1.3 Testing the sample application ..................................................................3:2 
3.1.4 Remote control interface ..........................................................................3:9 





Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:1  

3 Remote control of Ethiris Client 

3.1 Ethiris Client Remote control 

3.1.1 Overview 

The purpose of the Ethiris Client Remote control is for allowing other systems to 
control one or several Ethiris Client regarding what is displayed as live and 
recorded video.  

The other system can run locally on the same computer as Ethiris Client, or it 
can run on a remote computer. The vital thing to keep in mind is that the Ethiris 
Client Remote control must be installed on the same computer where the 
system that will use it runs. 

In the Ethiris setup, there is a specific Setup Type called Remote control of 
Ethiris Client that can be selected when installing only the remote control. If you 
want to install other Ethiris components together with the remote control, you 
have to choose Setup Type Custom and then select the component Remote 
control of Ethiris Client along with the other desired components. 

There are also two samples that show how to use the remote control; One in 
Visual Basic .Net 2017 and one in WideQuick. 

3.1.2 Installation 

Run Ethiris setup on the computer where you want the remote control. In the 
following description of the VB.Net sample, we assume you also install the 
Remote client samples/VB.Net and that Visual Basic .Net is installed on the 
computer. 

The remote control will eventually connect to an Ethiris Client somewhere in 
the network. The Ethiris Client need not be installed on the same computer as 
the remote control is, but it also works perfectly OK locally, with both the 
remote control and Ethiris Client on the same computer. 

If you want the sample project for WideQuick, just check the WideQuick 
checkbox in the Select Features dialog in the installation guide. 



Remote control of Ethiris Client Integration with Ethiris  

Ethiris Client Remote control   
 
 

3:2 

 
Figure 3.1 Select components Remote client sample & Remote control of Ethiris Client. 

The Remote control of Ethiris Client component (the actual remote control) is 
automatically selected when the sample is selected. 

3.1.3 Testing the sample application 

 The sample 
application is not 
intended to be 
used directly in a 

real application!  

After installation of the sample, you find the sample files in a subfolder of the 
Ethiris installation folder. In general, this is  
C:\Program Files\Kentima AB\Ethiris\Samples\RemoteClient\VB.Net. 

Note that the sample application only is supposed to demonstrate how to use 
Remote control of Ethiris Client. It is not intended to be used directly in a real 
application! 

 
Figure 3.2 The Remote client sample files for VB.Net in Windows Explorer. 

I assume that if you know Visual Basic .Net, you know how to use the source 
code files. Besides the source code files, there is a compiled version of the 
sample called EthirisClientRemoteSample.exe.  

Let’s try it out! 



Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:3  

Double-click the EthirisClientRemoteSample.exe file in Windows Explorer. The 
application starts and looks like in Figure 3.3. 

 
Figure 3.3 The Remote client sample VB.Net application just started. 

At the top of the form are fields for Address and Port. Default values are 
localhost and 1237. Localhost means the local computer. If the Ethiris Client you 
want to remote control runs on another computer, you have to enter the DNS 
name/IP-address of that computer instead. 

Before you can connect to an Ethiris Client, you have to configure the client so 
that it listens for incoming connections on port 1237. 

In Ethiris Admin, it looks like this: 

 
Figure 3.4 Enable remote connections on port 1237 in the client configuration. 

Save the client configuration and then start Ethiris Client. 

In my case, the Ethiris Client looks like below: 



Remote control of Ethiris Client Integration with Ethiris  

Ethiris Client Remote control   
 
 

3:4 

 
Figure 3.5 Ethiris Client with 3 different sections and 4 different views in the first section. 

In the example above, there are three sections, called Sec one, Sec two, and Sub 
sec, and there are four views in the first section called View one, View two, 
Parking, and Big. 

Now, it’s time to connect to Ethiris Client from the sample application. 

Click the Connect button. There should be a message informing you that the 
connection was successful. 

 
Figure 3.6 Connection to Ethiris Client successful. 

Directly below the Connect and Close buttons are 6 lists; Section Names, Client 
View Names, Cameras, Displayed Cameras, Popup windows, and Visible Popup 
windows. 



Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:5  

Below each list is a Fetch button. Click the Fetch button to retrieve the 
corresponding list. 

Section Names – Clicking the Fetch button retrieves the current client 
configuration’s list of sections. 

Client View Names – Clicking the Fetch button retrieves the names of the views 
that are part of the currently selected section in Ethiris Client. If you first choose 
a section from the Section Names list in the sample application, you will get a 
list of view names of the views in the selected section in the sample application 
rather than the section that is selected in Ethiris Client. 

Cameras – Clicking the Fetch button retrieves the names of all cameras part of 
the current client configuration. The list is the same as the list in the Cameras 
tool window in Ethiris Client. 

Displayed Cameras – Clicking the Fetch button retrieves a list of names for all 
cameras currently displayed live in Ethiris Client.  

Popup windows – Clicking the Fetch button retrieves a list of names for all 
popup windows defined in Ethiris Client. 

Visible Popup windows – Clicking the Fetch button retrieves a list of names for 
all popup windows currently displayed in Ethiris Client. 

 
Figure 3.7 Sample application after clicking the Fetch buttons. 

When you select a section by clicking its name in the Section Names list, the 
section name is copied to the Section field to the left of the Select Section 
button. The same goes for Client View Names and Popup windows. These fields 
are ringed in with green color in the example above. 

In the example above, section Sec one and the view Parking are selected. 

Click the Select Section button to change section in Ethiris Client and click the 
Select Client view button to change the view in Ethiris Client. 

Cameras list 

The Cameras list behaves somewhat differently since you can select multiple 
cameras on the list. Click a camera name to select it. Click again to unselect it. 
By clicking several cameras, one at a time, you can have several cameras chosen 
in the list. See the example below. 

Now, clicking the Select Camera(s) button will create a dynamic view in Ethiris 
Client and display the selected cameras in the Default Live panel. 



Remote control of Ethiris Client Integration with Ethiris  

Ethiris Client Remote control   
 
 

3:6 

 
Figure 3.8 Two cameras selected. 

 
Figure 3.9 A dynamic view with the two chosen cameras in Ethiris Client. 

Clicking the Select Camera(s) button has the same effect as clicking the Show 
button with Monitor 0 in the Show dynamic view section of the sample 
application. 

You can enter another monitor number, such as 1 for monitor 1. Clicking the 
Show button then will create a dynamic view in its own window on the specified 
monitor. 

 
Figure 3.10 Show a dynamic view on monitor 1. 

The dynamic view will display the cameras selected in the Cameras list. 



Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:7  

Popup windows 

Click the Show button to show the preconfigured view specified under View in 
the preconfigured popup window specified under the Popup window. 
Furthermore, the cameras selected in list Cameras will populate undefined 
camera views in the view. 

  
Figure 3.11 The Record Event button in the sample application. 

There are a lot of possibilities with the function. If no view is selected, the 
cameras chosen in the list Cameras will be displayed in a dynamic view in the 
selected popup window. If no cameras are selected, the selected view will be 
shown in the selected popup window precisely as it is defined. Om neither view 
nor any cameras are selected, the specified popup window will be closed. 

 

There is also a Record section in the sample application with a Record Event 
button. 

 
Figure 3.12 The Record Event button in the sample application. 

Click the Record Event button to start event recording on the cameras that are 
selected in the Cameras list. 

Finally, there is a Player section in the sample application. 

 
Figure 3.13 The Player section in the sample application. 

When you click the Load button, Ethiris Client brings up the Player tab, loads it 
with the cameras selected in the Cameras list, and sets the time ruler to the 
Timestamp in the Timestamp field in the sample application. 

Now you can maneuver the Player with the other buttons in the sample 
application; Start, Pause, Move to next recording, and Move to prev recording. 

Try them out! 

 



Remote control of Ethiris Client Integration with Ethiris  

Ethiris Client Remote control   
 
 

3:8 

WideQuick sample 

 The sample 
application is not 
intended to be 
used directly in a 

real application!  

If you selected the WideQuick sample in the installation, the sample project is 
located in a subfolder of the Ethiris installation folder. In general, this is  
C:\Program Files\Kentima AB\Ethiris\Samples\RemoteClient\WideQuick. 

Note that the sample application only is supposed to demonstrate how to use 
Remote control of Ethiris Client. It is not intended to be used directly in a real 
application! 

 
Figure 3.14 The Remote client sample project for WideQuick in Windows Explorer. 

Just start WideQuick Designer and open the project RemoteClient.kpro. 

When you run the project in preview, it looks similar to the VB.Net sample. 

 
Figure 3.15 WideQuick preview for the sample project. 



Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:9  

Most of the methods and events are implemented in this sample project. Please 
refer to the VB.Net example above for information about the purpose of the 
various buttons. 

3.1.4 Remote control interface 

When using the Ethiris Client Remote control, you use the interface of the 
control. The following is a reference to the various available properties, 
methods, events, and enumerations.  

Properties 

There are no properties for the Ethiris Client Remote control. 

 

Methods 

Close() 

Closes the connection to Ethiris Client. 

 

Connect(Address as String, Port as Long)  

Connects to the Ethiris client instance to be controlled as specified by the 
parameters. 

Address – A string containing the IP-address or the DNS name of the computer 
running the Ethiris Client. 

Port – Port number that the Ethiris Client listens to for remote control 
commands. This is by default 1237. 

 

GetCameraNames()  

Initializes the transfer of an array of camera names for all cameras in the client. 
The result is returned in the CameraNames event. 

 

GetDisplayedCameras()  

Initializes the transfer of an array of camera names for all cameras that are 
currently displayed by the client. The result is returned in the DisplayedCameras 
event. 

 

GetPopupWindowNames()  

Initializes the transfer of an array of all popup windows in the client. The result 
is returned in the PopupWindowNames event. 

 

GetSectionNames()  

Initializes the transfer of an array of strings defining the currently defined 
section names in the Ethiris client. The result is returned in the SectionNames 
event. 

 

GetViewNames([SectionName as String])  



Remote control of Ethiris Client Integration with Ethiris  

Ethiris Client Remote control   
 
 

3:10 

Initializes the transfer of an array of client view names in the current or 
specified section. The result is returned in the ClientViewNames event. The 
parameter is optional. If specified, the client views belonging to SectionName 
are returned. If no section is specified, the client views belonging to the 
currently selected section in Ethiris Client are returned. 

 

GetVisiblePopupWindows()  

Initializes the transfer of an array of popup window names that are currently 
visible in the client. The result is returned in the VisiblePopupWindows event. 

 

LoadCamerasInPlayerByTimestamp(Timestamp as String, CameraNames[] as 
String)  

Load the recorded video for the specified camera(s) into the client video player. 

Timestamp – A string containing the desired timestamp for the Player. This 
should be in the form YYYY-MM-DD hh:mm:ss.ttt, e.g. 2011-01-12 14:14:53.000. 

CameraNames[] – An array of strings containing the names of the desired 
cameras to load in the Player. 

 

MoveToNextRecording()  

Move player to beginning of next recording. 

 

MoveToPrevRecording()  

Move player to the beginning of the previous recording. 

 

PausePlayer()  

Pause the client video player. 

 

RecordEvent(CameraNames[] as String)  

Triggers recording of an event secuence for the specified camera(s). 

CameraNames[] – An array of strings containing the names of the desired 
cameras to start event recording for. 

 

ReloadConfiguration([ForceReload as Boolean])  

Instructs the client to initiate a reload of its configuration. The parameter is 
optional. If ForceReload is true, the configuration will always be reloaded. If the 
parameter is left out or is false, the configuration will only be reloaded if the 
configuration file has actually been updated since the configuration was last 
loaded by the client. Also, look at the event ReloadPending. 

 

SelectCamera(CameraNames[] as String)  

Displays a dynamically composed view of the listed cameras in the Default Live 
panel in Ethiris Client. 



Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:11  

CameraNames[] – An array of strings containing the names of the desired 
cameras to create a dynamic view for. 

 

SelectSection(SectionName as String, [ViewName as String])  

Selects a specified section in the Ethiris client. If ViewName is specified, the 
view is selected. 

SectionName – A string containing the name of the desired Section to select. 

ViewName – An optional string containing the name of the desired View to 
select. 

 

SelectView(ViewName as String, [SectionName as String])  

Select a specific client view in the current or specified section. The parameter 
SectionName is optional. If specified, a client view belonging to SectionName is 
selected. If no section is specified, the specified client view belonging to the 
currently selected section in Ethiris Client is selected. 

ViewName – A string containing the name of the desired View to select. 

SectionName – An optional string containing the name of the desired Section to 
select. 

 

ShowDynamicView(Monitor as Long, CameraNames[] as String)  

Displays a dynamically composed view of the listed cameras on the specified 
monitor. 

Monitor – A long value specifying the monitor where the dynamic view will be 
created. A value of 0 will display the cameras in the Default Live panel. A value 
of 1 will create a new dynamic window on monitor 1. 

CameraNames[] – An array of strings containing the names of the desired 
cameras to create a dynamic view for. An empty array will close the dynamic 
view on the specified monitor. 

 

ShowPopupView(PopupWindowName As String, ViewName as String, 
CameraNames() As String)  

Displays the preconfigured view specified in parameter ViewName in the 
preconfigured popup window specified in parameter PopupWindowName. It 
also populates undefined camera views with cameras specified in parameter 
CameraNames. 

PopupWindowName – A value of type String specifying the popup window to 
use. 

ViewName – A value of type String specifying the view to use as layout to show 
the cameras in parameter CameraNames(). If this parameter is empty, the 
cameras will be displayed in a dynamically created view. If the view contains 
defined camera views (cameras, rounds, hotspots, or background images), 
these will not be substituted with cameras specified in parameter 
CameraNames. Only camera views of type Camera, but without a defined 
camera, will be replaced. 



Remote control of Ethiris Client Integration with Ethiris  

Ethiris Client Remote control   
 
 

3:12 

CameraNames[] – An array of strings containing the names of the desired 
cameras the selected or dynamic view will contain. An empty array will show 
the defined view as it is defined.  

If both parameters ViewName and CameraNames are empty, the specified 
popup window will close. 

 

StartPlayer()  

Start playing the video that is loaded into the client video player. 



Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:13  

Events 

CameraNames(Names[] as String) 

This event is sent from the remote control after the command 
GetCameraNames has been sent to the control. The following parameters are 
sent in the event: 

Names[] – An array of strings containing the names of the available cameras in 
Ethiris Client. 

 

DisplayedCameras(Cameras[] as String) 

This event is sent from the remote control after the command 
GetDisplayedCameras has been sent to the control. The event is also sent 
spontaneously from the remote control when any change in which cameras as 
currently shown in Ethiris Client. The following parameters are sent in the 
event: 

Cameras[] – An array of strings containing the names of the cameras currently 
displayed in Ethiris Client. 

 

Failure(Command as eCmdCodes, Code as Long, Message as String) 

This event is sent from the remote control when a failure is detected in an 
operation that is not directly initiated by a call from the hosting application. The 
following parameters are sent in the event: 

Command – An integer indicating which operation went wrong. For more 
information, see Enumerations below 

Code – If applicable, this parameter contains an error code. 

Message – A string containing information about the problem. 

 

PlayerLoaded(Names[] as String, Timestamp as String) 

This event is sent from the remote control whenever the Player in Ethiris is 
loaded. The following parameters are sent in the event: 

Names[] – An array of strings containing the names of the cameras loaded in 
the Player. 

Timestamp – A string with the timestamp in the time ruler in the Player when it 
was loaded. 

 

PlayerState(State as ePlayerState) 

This event is sent from the remote control when there is a change in the Player 
state, e.g., when the Player starts or pauses playback of the video. The 
following parameter is sent in the event: 

State – There are a total of 3 different states as described below in the 
Enumerations section. The State parameter describes the new state of the 
Player. 

 



Remote control of Ethiris Client Integration with Ethiris  

Ethiris Client Remote control   
 
 

3:14 

PopupWindowNames(Names[] as String) 

This event is sent from the remote control after the command 
GetPopupWindowNames has been sent to the control. The following 
parameters are sent in the event: 

Names[] – An array of strings containing the names of the available popup 
windows in Ethiris Client. 

 

Recording(CameraName as String, Start as Boolean) 

This event is sent from the remote control when a camera starts or stops 
recording. The following parameter is sent in the event: 

CameraName– The name of the camera that starts or stops recording. 

Start – A Boolean value that is true when recording starts and false when 
recording stops. 

 

ReloadPending(WillReload as Boolean) 

This event is sent from the remote control as a response to the command 
ReloadConfiguration(…).  The following parameter is sent in the event: 

WillReload – A Boolean value that is true when the client will reload its 
configuration or false if the client will not reload its configuration. 

 

SectionNames(Names[] as String) 

This event is sent from the remote control after the command 
GetSectionNames has been sent to the control. The following parameters are 
sent in the event: 

Names[] – An array of strings containing the names of the available sections in 
Ethiris Client. 

 

Success(CommandaAs eCmdCodes) 

This event is sent from the remote control when a command was successful. 
The following parameters are sent in the event: 

Command – An integer indicating was successful. For more information, see 
Enumerations below 

 

ViewChanged(Section as String, View as String) 

This event is sent from the remote control when the current View in Ethiris 
Client is changed. The following parameter is sent in the event: 

Section – The name of the possible new current section. 

View – The name of the new current view. 

 

ViewNames(SectionName as String, Names[] as String) 

This event is sent from the remote control after the command GetViewNames 
has been sent to the control. The following parameters are sent in the event: 



Integration with Ethiris Remote control of Ethiris Client 

 Ethiris Client Remote control  
 

 3:15  

SectionName – The name of the current or specified section. 

Names[] – An array of strings containing the names of the available views in the 
section. 

 

VisiblePopupWindows(PopupWindows[] as String) 

This event is sent from the remote control after the command 
GetVisiblePopupWindows has been sent to the control. The event is also sent 
spontaneously from the remote control when any popup window is opened or 
closed. The following parameter is sent in the event: 

PopupWindows[] – An array of strings containing the names of the popup 
windows currently visible in Ethiris Client. 

Enumerations 

eCmdCodes contains 13 different values from 0 to 12 as described below: 

eccUnknown – 0. Command Unknown. 

eccConnect – 1. Command Connect. 

eccDisconnect – 2. Command Close. 

eccSelectSection - 3. Command SelectSection. 

eccSelectView – 4. Command SelectView. 

eccSelectCamera – 5. Command SelectCamera. 

eccRecordEvent – 6. Command RecordEvent. 

eccLoadCamerasInPlayerByTimestamp – 7. Command 
LoadCamerasInPlayerByTimestamp. 

eccStartPlayer – 8. Command StartPlayer. 

eccPausePlayer – 9. Command PausePlayer. 

eccShowDynamicView – 10. Command ShowDynamicView. 

eccMoveToNextRecording – 11. Command MoveToNextRecording. 

eccMoveToPrevRecording – 12. Command MoveToPrevRecording. 

eccShowPopupView– 13. Command ShowpopupView. 

 

ePlayerState contains 3 different values from 0 to 3, as described below: 

epsUnknown – 0. The Player is in an unknown state. 

epsRun – 2. The Player is in state Started. 

epsPause – 3. The Player is in state Pause. 

 





Integration with Ethiris Remote control of Ethiris Client 

  
 

  

4 Modbus OPC Server 4:1 

4.1 Modbus OPC Server ....................................................................................................4:1 
4.1.1 Overview ....................................................................................................4:1 
4.1.2 Installation .................................................................................................4:1 
4.1.3 Configuration .............................................................................................4:1 





Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 

 4:1  

4 Modbus OPC Server 

4.1 Modbus OPC Server 

4.1.1 Overview 

The purpose of the Kentima Modbus OPC Server is to communicate with 
systems using the Modbus protocol. In this section, we will set up 
communication between the Ethiris Server and a Beckhoff BK9000 module, 
used for distributed I/O. 

To get things working, we need at least an Extended license level for the Ethiris 
Server, since we will use the OPC Client functionality in Ethiris Server. We also 
need the Kentima Modbus OPC Server installed on the same computer as the 
Ethiris Server. Then the Ethiris Server will use COM rather than DCOM, which is 
much harder to set up due to complex security settings. DCOM is beyond the 
scope of this manual. 

4.1.2 Installation 

Run the Kentima Modbus OPC Server setup on the same computer as the Ethiris 
Server runs on. This setup program requires a Product code. Make sure you 
have access to a product code for Kentima Modbus OPC Server before you 
install the OPC Server. 

4.1.3 Configuration 

First, we have to configure the OPC Server. Start the Modbus OPC Server 
program on the Start menu. 

 
Figure 4.1 The Modbus OPC Server program on the Start menu. 

Right-click on KentimaOPCModbus in the treeview and select Create TCP 
connection in the popup menu. 



Modbus OPC Server Integration with Ethiris  

Modbus OPC Server   
 
 

4:2 

 
Figure 4.2 Create a TCP connection. 

A new node called Default TCP Connection is created in the treeview. Enter the 
IP address of the Beckhoff device. 

 
Figure 4.3 Enter IP address. 

If you want, you can change the name of the TCP connection, but it is not 
necessary. I will change it to Beckhoff for clarity. 

Right-click the Default TCP Connection (Beckhoff) node in the treeview and 
select Create slave in the popup menu. Note that the name is updated in the 
treeview when you click the node. 



Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 

 4:3  

 
Figure 4.4 Create a slave. 

A new node appears in the treeview, Default Slave. You can change the name 
for this node also. In this example, we choose the name Fence, pretending that 
the device is used for some kind of detector for a fence. 

 
Figure 4.5 Slave created. 

In this example, we have a digital input card (KL1104) connected to the 
Beckhoff device. There are several different models of input cards with various 
numbers of inputs. This particular card has four digital inputs. 

The next step is to configure the digital inputs in the OPC Server. All 
communication is conducted through messages. So, first, we create an input 
message. Right-click the Default Slave (Fence) node and select Add read input in 
the popup menu. 



Modbus OPC Server Integration with Ethiris  

Modbus OPC Server   
 
 

4:4 

 
Figure 4.6 Add digital input message. 

Another node appears, Default Message 0-0. Change the name of the message 
to something meaningful, like Inputs. 

 
Figure 4.7 Read input message added. 

Now it’s time for the inputs. Right-click the new node Default Message 0-0 
(Inputs 0-0) and select Create variable in the popup menu. 

 
Figure 4.8 Create variable. 

A new node appears. Change the name to something more sensible, like Input1. 
The address is as default 0. This is the first address on the device. 



Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 

 4:5  

 
Figure 4.9 Rename the new variable. 

As mentioned before, we have four digital inputs. You can use the Duplicate 
menu to add three more digital inputs to the configuration. Now the address is 
automatically increased, and the name automatically generated for the 
following inputs. 

 
Figure 4.10 Duplicate variables. 

After we have done this three times, we have four digital inputs. 

 
Figure 4.11 4 digital inputs created. 



Modbus OPC Server Integration with Ethiris  

Modbus OPC Server   
 
 

4:6 

We are now finished configuring our digital input signals. Let’s configure four 
digital output signals as well. Just as for the Beckhoff input cards, there are 
several different types to choose from. In this example, we use a card with four 
digital outputs, called KL2134. 

Since we already have configured some aspects of the device, like the IP 
address, we can go directly on to the output message.  

Right-click the Fence node in the tree view and select the Add force multiple 
coils menu item. 

 
Figure 4.12 Add a message for output signals. 

A new message is created. 

 
Figure 4.13 Created Output message. 

Change the name of the message to, e.g., Outputs. The change has no effect 
until you click in the treeview. 

The next step is to create output signals. 

Right-click the Outputs node and select Create variable. 



Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 

 4:7  

 
Figure 4.14 Create Output variable. 

A new variable is created. Select it in the tree view and rename it to Output1. 

 
Figure 4.15 New Output variable created. 

Note! In this example, we are using a Beckhoff device. The first address for 
output signals is 0. If you are using an ADAM device, the first output address 
starts at 16. 

Duplicate the output variable three times. 

 
Figure 4.16 Duplicate the Output variable three times. 

When you are done, the configuration dialog should look like this: 



Modbus OPC Server Integration with Ethiris  

Modbus OPC Server   
 
 

4:8 

 
Figure 4.17 All messages and variables created. 

 

Alright, now we have configured the OPC Server for TCP communication with a 
device with a specific IP address. We have created one message for four digital 
inputs and one message for four digital outputs, which will be communicated 
by the OPC Server. 

The next step is to save the configuration and tell the OPC Server to use the 
new configuration. 

Select the menu Server->Set active config file…. 

 
Figure 4.18 Activate configuration. 

Click Save in the dialog that appears. 



Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 

 4:9  

 
Figure 4.19 Save the new configuration. 

A message appears informing that the OPC Server was restarted. It is restarted 
to read the new configuration. 

 
Figure 4.20 OPC Server restarted. 

Now we are done with the OPC Server configuration. 

The next step is to configure Ethiris to communicate with the OPC Server. 

Start Ethiris Admin and double-click the OPC Servers node in the tree view. 



Modbus OPC Server Integration with Ethiris  

Modbus OPC Server   
 
 

4:10 

 
Figure 4.21 OPC Servers panel in Ethiris Admin. 

Create a new OPC Server by clicking the New OPC Server button. 

 
Figure 4.22 New OPC Server added. 

Change the name to something else, e.g., Beckhoff. 

Click the Browse button to the far right for selecting an OPC Server. In the 
browse dialog, select the Kentima OPC server for Modbus. 



Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 

 4:11  

 
Figure 4.23 Select Kentima OPC server for Modbus 

Right-click the new node in the tree view and select New->OPC Group in the 
popup menu. 

 
Figure 4.24 Create a new OPC Group. 

A new node is created in the tree view.  

Double-click the new node to open the corresponding panel. 

Change the name of the group to something meaningful, e.g., Inputs. 

To the right in the panel, there is an OPC Item Browser tool window that is 
docked. You can browse the OPC Server by expanding the treeview in the upper 
pane. You have to select each node before you can expand it.  

Select the node Inputs in the upper pane. Now, the four input signals are visible 
in the lower pane. 



Modbus OPC Server Integration with Ethiris  

Modbus OPC Server   
 
 

4:12 

 
Figure 4.25 Rename the new OPC Group. 

Select the four input signals in the lower pane and drag-and-drop them into the 
OPC-Tags list to the left. 

 
Figure 4.26 OPC tags added. 

When the tags are added to the list, you can rename them to a somewhat 
shorter name. 

If you like, you can create another group for the output signals and add the four 
output signals to that group. An alternative is to add all eight signals (four input 
and four output) to the same OPC Group. 



Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 

 4:13  

 
Figure 4.27 OPC tags for the four output signals also added. 

 

Now, the new signals are available in Ethiris Server’s data store via the Variable 
Browser or via Ethiris Client for presentation in live. 

 
Figure 4.28 New signals available in Variable Browser. 

 

 

  

 





Integration with Ethiris Modbus OPC Server 

 Modbus OPC Server  
 
 

   

5 Listeners 5:1 

5.1 Listeners ......................................................................................................................5:1 
5.1.1 Overview ....................................................................................................5:1 
5.1.2 Listeners general .......................................................................................5:2 

5.2 Types of listeners ........................................................................................................5:3 
5.2.1 TCP-inbound ..............................................................................................5:3 
5.2.2 TCP-outbound ............................................................................................5:4 





Integration with Ethiris Listeners 

 Listeners  
 
 

 5:1  

5 Listeners 

5.1 Listeners 

5.1.1 Overview 

Listeners are first of all used for listening to messages from external equipment 
such as e.g., cameras and video encoders. But, somewhat contradictable, 
listeners can also be used for sending information to external equipment, and in 
that way, you can achieve two-way communication. The primary purpose, 
though, is to receive information, hence the name Listeners. 

 

Licensing 

To have all main types of listeners working, at least license level Extended is 
needed for Ethiris Server.  

There is one listener with limited functionality that is available for all license 
levels. This listener is automatically created and cannot be deleted. The name 
of the listener is TCP. For more information, see the manual Admin - 
Configuration for Ethiris. 

 

Figure 5.1 The node Listeners in Ethiris Explorer treeview. 



Listeners Integration with Ethiris  

Listeners   
 
 

5:2 

Listener types 

There are four main types of listeners: 

 TCP inbound 

 TCP outbound 

 HTTP inbound 

 HTTP outbound 

Which type to use depends on in which way the external equipment can 
communicate. 

 

5.1.2 Listeners general 

Listeners represent a relatively complex part of Ethiris. The upside is that they 
can be utilized in many situations for communicating with external equipment. 

Which protocol to use is determined by Type, where you can choose between 
TCP and HTTP. 

Via Type, you also select which one of Ethiris Server or the external equipment 
is responsible for starting the communication. 

Inbound designates that it is the external equipment that is supposed to take 
the initiative of the communication. In this case, Ethiris Server listens to the 
specified port and waits for the external equipment to start sending messages. 
Note that the specified port has to be open in a possible firewall. 

Outbound designates that it is Ethiris Server that is supposed to take the 
initiative of communication. Then Ethiris Server will actively try to connect to 
the external equipment using the specified IP address and port. 

When a connection is established, and the communication commences Ethiris 
Server receives a text from the external equipment (regardless of whether the 
type is inbound or outbound). Now the whole idea is to activate triggers by 
matching corresponding texts in the data received by Ethiris Server. 

A trigger consists of three parts; Name, Function, and Match (Text to match). 

Each trigger is represented in the Ethiris Server data store as a variable of type 
Boolean. A Boolean variable can hold two different values; true or false. In this 
context, this means that the trigger is either triggered or not triggered. 

Each listener can have a list of several triggers. 

You could say that the whole process consists of two main parts. The first part is 
about the listeners receiving data, and the second part is about the script 
engine activating the triggers. 

The reception of data looks slightly different depending on whether you have 
specified a SOT (Start Of Text) and/or EOT(End Of Text) or not. 

 

Let’s start by assuming that neither SOT nor EOT has been specified. As soon as 
the listener has received data, it will check its triggers’ Match string for 
matching strings in the received data. If no match is found, the listener keeps 
receiving data that is kept in the listener’s internal buffer. 



Integration with Ethiris Listeners 

 Types of listeners  
 
 

 5:3  

Each time new data is received by the listener, it checks its triggers in the order 
the triggers are defined in the list. When a match is found, all data received so 
far is copied to a variable named TriggerString. The variable is automatically 
created for each listener and is available via script. The trigger will be put in a 
queue that the script engine will process. Several triggers can, in this way, 
match at the same time for a listener. In that case, they will be put in the queue 
in the order they are defined in the list. The script engine will process them one 
at a time. If any of the triggers match, the internal buffer of data will be cleared, 
and the whole process will start all over again. 

When there are triggers in the queue, the script engine will process them one at 
a time. The trigger first in line will be active during one round of script 
execution. That means that the corresponding variable is true during one 
execution interval. After that, the variable is set to false again, and the trigger is 
removed from the queue. The corresponding TriggerString will also be cleared. 
Then the script engine takes the next trigger in line from the queue, sets its 
value to true during one round of execution, and so on. 

Now, let’s assume we have entered a text for SOT. Now the listener will discard 
all data received until the text specified for SOT appears in the received data. 
Then the listener starts to collect received data in its internal buffer and check 
its triggers in the same way as described above. When we find a match the 
corresponding trigger is put in the queue for the script engine, the TriggerString 
variable will be updated with the data that has been received so far starting 
with the SOT, and after that, the internal buffer will be cleared, and the listener 
will start looking for a new SOT in the incoming data. 

If we specify an EOT, the check of triggers will not be performed until the text 
specified as EOT appears in the received data. If there is no match, all data, 
including the EOT received so far, will be discarded, and the process starts all 
over again. If there is a match, the matching trigger will be put in the queue, the 
TriggerString variable will be updated, and the internal buffer up to and 
including EOT will be cleared. Note that there may be several EOT in the 
received data. In that case, they will be processed one at a time. First, the part 
of the data up to and including the firs EOT will be processed. Triggers will be 
checked and possibly put in the queue. Then that part of the data will be 
discarded, and the next part of the data up to the second EOT will be processed, 
and so on. 

Finally, if both SOT and EOT are specified, the listener will start buffering data 
after the SOT is received, and then the listener collects data until an EOT 
appears. Not before that, the list of triggers will be checked. In all other aspects, 
it works in the same way as described above. 

In the following pages, we describe how to use these listeners in Ethiris. We 
assume that you are familiar with the listeners in Admin. For more information 
on how to create and manage listeners, see the Admin - Configuration for 
Ethiris manual. 

 

5.2 Types of listeners 

5.2.1 TCP-inbound 

For an example of the listeners, see the Admin - Configuration for Ethiris 
manual. 

 



Listeners Integration with Ethiris  

Types of listeners   
 
 

5:4 

5.2.2 TCP-outbound 

This listener works in the way that Ethiris Server takes the initiative to 
communicate with the external unit. Ethiris then expects the external unit to 
start sending data spontaneously. 

To make this work, the external unit needs to listen to a specific port, and any 
firewalls in the external unit must allow incoming connections on the specified 
port. 

In the example, we use a UDP-camera that will send notifications to Ethiris 
Server as it detects motion. 

 

Configure the camera 

The first thing to do is to configure the camera to listen to a port. 

Navigate to the camera’s web interface, log on, and click on Setup. 

 
Figure 5.2 Web interface in UDP-camera 

Navigate to Event Configuration and then Motion Detection in the menus of the 
camera. Click on TCP to configure the camera to send TCP Events. You should 
see the following. 

 
Figure 5.3 Setting for TCP Event in the camera 

Check Enable TCP Event and set the port on which the camera should listen on. 
In this case, the camera should listen to port 1234. 



Integration with Ethiris Listeners 

 Types of listeners  
 
 

 5:5  

Click OK and then check Post notification message under Subscriber - TCP. 
Finally, click Apply to save the changes in the camera. 

 
Figure 5.4 Configuration of notification 

Now it’s time to configure the motion detection in the camera. 

Navigate to Motion Detect and then to Zones and Rules in the cameras web 
interface. 

 
Figure 5.5 Configuration of Motion Detection in the camera 

In this case, we only use one zone (Z1) in the camera and it covers the whole 
image from the camera (the green surface). In the diagram to the right, you can 
see the amount of motion for the past time. Red means the amount of motion 
has been above set triggering level. The camera will, in that case, send a 
notification to the Ethiris Server. 

The configuration in the camera is now finished, and we move to configure the 
listener in Ethiris Admin. 

 

Configure listener in Ethiris Admin 

Double click the node Listeners under Communication in the treeview. 

Then click on New listener. You should see something similar to Figure 5.6. 



Listeners Integration with Ethiris  

Types of listeners   
 
 

5:6 

 
Figure 5.6 The panel Listeners. 

Change the name of the listener to UDP and the type to TCP outbound as it is 
Ethiris Server that should take the initiative to the communication. When the 
type is changed to TCP outbound, you also get the possibility to set Address to 
the external unit. In this case, we set the IP-address to the UDP-camera, 
192.168.31.84. Port shall remain at 1234 as this was the port we configured the 
camera to listen to, see Figure 5.3. 

When you are finished, it looks something like this. 

 
Figure 5.7 The panel Listeners with type changed for the new listener. 

Note the error mark that is shown in Figure 5.6. This is because two listeners 
are configured as an inbound connection on the same port. This will not work. 
When the type for the new listener is changed to outbound, the error mark 
disappears. 

Now double click on the new listener in the treeview to the left. The listener’s 
panel will be shown. 

 

Figure 5.8 The UDP panel. 

Now it’s time to do the final configuration of the listener. You can get some 
help by starting the monitoring of the traffic between the camera and the 
Ethiris Server. In the traffic, the keywords that we need to identify for the 
listener to work optimally. Examine the text flow from the camera carefully and 
look for the keywords we will use as SOT, EOT, to start recording and to stop 
recording. 



Integration with Ethiris Listeners 

 Types of listeners  
 
 

 5:7  

 
Figure 5.9 The UDP panel with identified keywords. 

In the text flow from the camera, the keywords have been identified and 
marked by red circles. The keywords are then added to the corresponding fields 
in the listener’s configuration. 

The text ’info’ start each row text from the camera where the keywords for 
start respective stop of recording are. Hence we set ‘info’ as SOT for the 
listener. 

Likewise, we identify the character ‘\x0a’ as the last character in each row 
where the keywords for start respective stop of recording are. So, we set ‘\x0a’ 
as EOT for the listener. 

A small detail that can be very important is the setting for Timeout (ms). The 
camera automatically sends a heartbeat notification approximately every 15

th
 

second. This is to ensure that the communication channel is up and running. To 
make sure Ethiris doesn’t alert on communication error with the camera, we 
must set the timeout at 20s. It works in that way that if Ethiris doesn’t get any 
data from this listener within set timeout, Ethiris will activate the alarm 
Communication error with listener. 

Now it is time to identify the keywords for the triggers we will use to start and 
stop recording in Ethiris. 

In our case, we have only one zone defined in the camera, why we only need to 
use the text ‘zonebit=1’ as a trigger for motion start. Likewise, we use 
‘zonebit=0’ as a trigger for motion end in the camera. 

We create two triggers with these keywords to match. 

Script in Ethiris Admin 

The last step is to write that line of script code needed to connect the listener 
with the camera and to start/stop recording. 

The camera we will record from is called UDPCam in our example. 

The two triggers show up as variables of type Boolean in the variable browser in 
script panel. 



Listeners Integration with Ethiris  

Types of listeners   
 
 

5:8 

 
Figure 5.10 The new trigger variables are available in the variable browser. 

With these new variables, we can write a small script for starting a recording 
when there is movement in front of the camera. 

The following script makes this happen: 

UDPCam.RecordEvent = (UDPCam.RecordEvent || UDP.Start) 

&& !UDP.Stop; 

Since the trigger variables are true only during one round of script execution, 
we need this construct of the script where the RecordEvent variable holds itself 
until we get a stop signal in the form of UPD.Stop becoming true. 

|| means ”or”. 

! means ”not”. 



Integration with Ethiris Explanation of Terms 

 Types of listeners  
 
 

 6:1  

6 Explanation of Terms 

ActiveX 

ActiveX is a framework for defining reusable software components in a 
programming language-independent way. Software applications can then be 
composed of one or more of these components to provide their functionality.  

COM 

Component Object Model. A binary communication standard from Microsoft 
that can be used in communication between various program components. 
COM is the basis of OPC.  

IP address 

Each unit in a computer network has a unique IP address that consists of 4 
groups of digits. Each group can be 0-255, for example, 192.168.30.29. 

License key 

A key that is received from Kentima after payment has been made, and a 
registration key has been submitted. The license key is used to “unlock” Ethiris 
via the license dialog. 

Network camera 

A type of camera that can be directly connected to a network. The camera 
device has a unique IP address. 

OPC 

OLE for Process Control. A communication standard developed within the 
automation industry for communication between different systems. 

Product code 

A key following each Ethiris license. The key shall be entered at installation 
time. The Ethiris server requires a product code at installation. 

Registration key 

The key that uniquely identifies an instance of a program. The key is generated 
by clicking the Register button in the license dialog. This key must be sent to 
Kentima AB to unlock Ethiris. 

TCP/IP 

Transmission Control Protocol/Internet Protocol. 

 

http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Function_composition_(computer_science)


Explanation of Terms Integration with Ethiris  

Types of listeners   
 
 

6:2 

 



Integration with Ethiris Index 

   
 

 7:1  

7 Index 

A 

ActiveX 2:1 

C 

Configuration 
Modbus OPC Server 4:1 

I 

Installation 
ActiveX 2:2 
Modbus OPC Server 4:1 
Remote control 3:1 

Interface 
ActiveX 2:7 
Remote control 3:9 

L 

Listeners 5:1 
Licensing 5:1 
TCP-inbound 5:3 
TCP-outbound 5:4 
Types 5:2 

M 

Modbus OPC Server 4:1 

P 

Purpose 1:1 

R 

Remote control 3:1 

S 

Sample 
ActiveX 2:3 
Remote control 3:2 

Scalability 1:2 



Index Integration with Ethiris  

   
 
 

7:2 

 


